
Known caveats of Belenios 3.1

Véronique Cortier and Pierrick Gaudry, CNRS, Loria

April 28, 2025

Abstract

We list here some known caveats of Belenios, as implemented in v3.1 (and earlier versions).
We concentrate on issues that do not appear in the theoretical description of the (lastest version
of) Belenios; typically, we do not recall that Belenios does not provide coercion-resistance beyond
allowing revotes, nor cast-as-intended.

We do not know whether these caveats will be fixed, nor how, since the development of the
Belenios software is now independent of our research teams.

We assume here that the reader is already familiar with Belenios, whose high level description
can be found in [4].

1 Verifiability issue when revoting

As discovered in [2], there is a verifiability attack when the voting server is compromised or, to some
extent, when the attacker fully controls the communications. The attack works roughly as follows:

• Alice votes for candidate A and submits a ballot bA.

• Alice then changes her mind and votes for candidate B and submits a ballot bB .

• Alice checks that bB appears on the bulletin board.

• The voting server replaces bB by bA. This is interpreted as a revote, hence the vote of Alice for
candidate B is replaced by a vote for A.

Discussion. If we assume that:

• Alice checks that her ballot appears on the bulletin board each time she votes, hence in particular
when she submits ballot bA,

• and if the ballot box is constantly monitored,

then the monitoring would catch the replacement of bB by bA and declare the election invalid. Hence
there is no attack under these 2 assumptions.

Now, if Alice only checks her last vote and if the voting server correctly guesses that Alice will not
check her first vote, then this attack cannot be detected in Belenios 3.1 and earlier. Note that this attack
applies to Helios [1] as well.

As initially suggested in [2], a way to fix this attack is to link a ballot with the previous ones by
including a hash of the previous ballots inside the zero-knowledge proof of the new ballot. The fix
proposed in [2] assumes that voters vote sequentially, which is not realistic. Hence [3] (briefly) devises a
refined fix for Belenios, where ballots are linked with previous ballots of the same voter.

2 No proper Bulletin Board

Belenios strongly assumes that all participants (voters, decryption trustees, registrar, auditors) have
access to a public, append-only bulletin board. In practice, the implementation of the bulletin board is

1



simply a webpage served by the voting server. Hence a dishonest voting server may provide inconsistent
views to the participants. The consequences in terms of security are discussed in [5].

How to securely realize a public bulletin board typically assumes a distributed setting, with several
online servers, as discussed in [5]. An alternative would be that the voting server signs a chained list
of the ballots, providing some accountability : if the voting server misbehaves, it would be eventually
caught. Then it could be possible to achieve security against a malicious but cautious voting server that
would not take the risk of signing inconsistent bulletin boards. The details of such an approach remain
to be worked out.

3 Fragile vote privacy

Vote privacy is ensured in Belenios by distributing the secret decryption key amongst decryption trustees,
possibly in a threshold manner. Each trustee generated their private key share on their own machine.
Hence the complete decryption key is never present on a single computer. Of course, the trustees
should use their decryption key only to decrypt the final bulletin board, otherwise vote privacy may be
compromised.

With the Belenios voting platform, all the operations (key generation and decryption) can be done
by the trustees in their browser. They should simply store their secret key in a secure manner. This
means however that the protocol is not strictly implemented as explained in the literature.

Homomorphic tally. When the questions of an election are of the form: “select between k and n
candidates in a list”, Belenios uses El Gamal encryption in an homomorphic manner: during the tally,
ballots are combined together (by multiplying them) so that only the final result needs to be decrypted.
From a theoretical perspective, election trustees should look at the bulletin board, check that each
individual ballot is valid, compute the homomorphic combination of the ballots, and decrypt it (and
provide a proof of correct decryption).

With the Belenios voting platform, each trustee does not check any individual ballot. They are
provided with the (claimed) homomorphic combination C of the ballots, by the server, who may behave
dishonestly. Hence a dishonest server may try to provide another ciphertext instead, for example, Alice’s
ballot.

Therefore, trustees should first check that the combination C is the one that appears on the main
page of the election (in the gray area). Then assuming in addition that the election page is monitored,
then the other checks can indeed be discharged to the monitoring and privacy is still preserved.

Mixnet tally. When voters need to rank or grade the candidates of an election, Belenios uses a mixnet-
based tally: ballots are shuffled and re-randomized, with a proof of correct shuffling, in a consecutive
manner, by each of the decryption trustee (the administrator may chose to skip some trustee). Then the
resulting ballots are decrypted one by one by the trustees, with a proof of correct decryption.

From a theoretical perspective, each trustee t should:

• retrieve the content of the ballot box on the public bulletin board,

• check the validity of each ballot

• check the proofs of shuffles of the previous shuffles

• produce a shuffle St and provide a proof of correct shuffling

• once the shuffling phase is over, retrieve the list C of ciphertexts to be decrypted

• check that it corresponds to the chain of shuffles from the initial ballot box

• decrypt it and provide a proof of correct decryption

For usability reasons, what is really done by each trustee t is:

• retrieve the content of the ballot box on the public bulletin board

2



• produce a shuffle St (+ proof) and store a hash of it

• once the shuffling phase is over, retrieve the list C of ciphertexts to be decrypted and store a hash
of it

• decrypt it + provide a proof of correct decryption

The other checks are discharged to the auditors. If trustees properly follow the instructions described
in https://www.belenios.org/instructions.html, privacy should not be broken. Indeed, before de-
crypting, a trustee should check on the web page of the election that:

• St appears on the web page (to make sure their shuffle has not been ignored, otherwise privacy
could be completely broken)

• C appears on the web page (to make sure they will decrypt the correct list, otherwise they may be
decrypting the initial list of ballots).

Note that these checks are not explained by the web client of the trustees so they should be properly
instructed. Alternatively, on the long term, it would make sense to provide trustees with a native
application (instead of a webpage) that would perform all the required checks, without having to assume
an external, active, auditor.

References

[1] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX, 2008.

[2] Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang. Election Verifiability Revisited:
Automated Security Proofs and Attacks on Helios and Belenios. In 34th IEEE Computer Security
Foundations Symposium, (CSF 2021), pages 1–15, 2021.

[3] Véronique Cortier, Alexandre Debant, and Vincent Cheval. Election verifiability with proverif. In
36th IEEE Computer Security Foundations Symposium (CSF’23), 2023.

[4] Véronique Cortier, Pierrick Gaudry, and Stephane Glondu. Belenios: a simple private and verifiable
electronic voting system. In Foundations of Security, Protocols, and Equational Reasoning, pages
214–238. Springer, 2019.

[5] Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing the Achilles Heel of E-Voting: The Bulletin
Board. In Computer Security Foundations Symposium (CSF), 2021.

3

https://www.belenios.org/instructions.html

	Verifiability issue when revoting
	No proper Bulletin Board
	Fragile vote privacy

